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Abstract   Coordination-insertion  ring-opening  polymerization  (ROP)  of  cyclic  esters  is  an  industrial  way  to  synthesize  polyesters,  which  are

widely applied in biomedical and environment-benign fields. However, the rate-determining transition state (TS) identified by the conventional

reaction  pathways  (pathway  A  and  pathway  B)  presented  in  the  literature  did  not  well  describe  the  structure-reactivity  relationship.  The

misidentification of the rate-determining TS might arise from the less ergodicity in the search of reaction pathways. Herein, we suggested a stride

strategy based on the insight that even a partial double bond is rotatable at the catalysis temperature. As a result, we revealed a new reaction

pathway, pathway C with a torsion transition state TSC2, by density functional theory (DFT). We also carried out kinetic experiments of ROP of D-

lactide (D-LA), L-lactide (L-LA), ε-caprolactone (CL), and δ-valerolactone (VL), using poly(ethylene glycol) as the initiator and stannous octoate as

the catalyst. The excellent linearity between the calculated free energy barriers and logarithms of the experimental kinetic constants of the two

kinds of lactide and lactone monomers, was established, validating the quasi-ergodic search of reaction pathways and the scaling predicted by

transition  state  theory.  The  linearity  was  highly  predictive  for  the  other  lactide  and  lactone  monomers,  demonstrated  by  glycolide  (GA)  and

trimethylene urethane (TU).
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INTRODUCTION

Aliphatic  polyesters,  a  class  of  important  polymers  with
sustainability,  biodegradability  and  biocompatibility,[1−7] are
usually  synthesized via ring-opening  polymerization  (ROP)  of
cyclic  esters.[8,9] Many  ROP  reactions  proceed  through
coordination  insertion.[10−14] While  a  series  of  metal  ions  (e.g.,
main group metals, transition metals, and rare earth metals) can
be used as the active center of catalyst,[15−17] Sn2+ has been used
in  industry  for  ROP  and  is  thus  particularly  useful.  A  large
number of catalyst/initiator combinations have been tried,[18−20]

and the initiators for the coordination-insertion ROP are usually
with  at  least  one  amino  or  hydroxyl  terminal,  for  instance
poly(ethylene  glycol)  (PEG)  with  hydroxy  end  groups.[21−25]

However,  even  if  more  and  more  cyclic  ester  monomers  are
applicable  for  ROP,[26−29] a  satisfactory  theoretical  structure-
reactivity  relationship  between  catalyst/initiator  combinations
and  polymerizable  monomers  is  still  absent.  Thus,  com-
prehensive fundamental research of coordination-insertion ROP

of cyclic esters triggered by a complex of catalyst and initiator is
much required.

Transition  state  (TS)  theory,  which  was  published  inde-
pendently by Eyring[30] and Ewans-Polanyi[31] both in 1935, is
one of the most useful chemical theories.[32] Under the frame-
work of TS theory, the activity of a multistep reaction is regu-
lated  critically  by  the  corresponding  rate-determining  TS,
namely the highest saddle point on the potential energy sur-
face (PES), along the so-called reaction coordinate. The calcu-
lated energy barriers  of  rate-determining TSs in a theoretical
study  are,  in  principle,  linearly  correlated  with  logarithms  of
the  reaction  rate  constants  obtained  from  experiments  ac-
cording to Eyring-Polanyi equation in TS theory expressed as
follows:

k =
kBT
h

e−ΔG/RT (1)

where kB is  Boltzmann  constant, h is  Planck  constant, T is
absolute  temperature, R is  ideal  gas  constant,  and  ΔG is  free
energy  barrier  in  the  unit  of  kcal·mol−1.  Given  the  well-
established linear relation of a reaction system, the reaction rate
constants  of  subsystems  can  be  predicted  by  the  calculated
energy barrier. Then the key to a multistep reaction is to identify
the real rate-determining TS with the globally minimum energy
barrier.  Since  reaction  dynamics  is  complicated,[33] much
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progress has been made in identifying rate-determining TS and
pertinent  modelling  of  a  chemical  reaction.[34−38] Density
functional  theory  (DFT)  has  revolutionized  the  studies  of
reaction  mechanisms  by  providing  a  significantly  more  cost-
effective way to predict the configuration or conformation of a
TS  and  calculate  the  corresponding  energy  barrier  of  the  TS
during  a  reaction  process.[39] However,  despite  the  efforts  of
many researchers in DFT modelling, the linear relation in a large
range  has  not  been  well  established  in  the  literature  of
coordination-insertion  ROP,  although  valuable  efforts  have
been made in a small range.[40,41] We surmised that the previous
researches of coordination-insertion mechanism omit some key
dynamic  steps  and  the  corresponding  reaction  pathways,
making  the  less  ergodicity  of  reaction  pathway  search.  As  a
result, the predictability of the theoretical calculations is limited.

It  is  worthy  of  noting that  the  quantum chemistry  in  find-
ing a rate-determining TS of a multistep reaction is,  different
from those more coarse-grained modellings such as molecu-
lar dynamic simulation and dynamic Monte Carlo simulations
in  other  microscopic  modelling  of  chain  dynamics,[42−49] not
able  to  proceed  through  an  automatic  ergodic  search,  be-
cause  of  the  very  high  dimensions  of  PES.  A  predicted  rate-
determining TS  with  the  energy  barrier  is  always  accompan-
ied with a hypothesized reaction pathway instead of a global
search  on  PES.  The  resulting  less  ergodicity  makes  the  ob-
tained  rate-determining  TS  highly  dependent  upon  experi-
ences,  which  might  be  the  bottleneck  in  identifying  the  real
rate-determining TS with the globally minimum energy barri-

er in a multistep reaction.
To solve this problem, we supposed a stride strategy to en-

able  a  quasi-ergodic  search  of  reaction  pathways.  While  the
conventional  small  step  search  probably  afford  the  TSs  and
the  corresponding  pathways  fettered  in  the  local  landscape,
the “stride” mentioned here starts with a conscious and bold
try  beyond  the  tradition  to  discover  the  new  reaction  path-
ways  to  enable  a  quasi-ergodic  search  and  help  identify  the
real  rate-determining  TS.  As  schematically  presented  in  Fig.
S1  (in  the  electronic  supplementary  information,  ESI),  the  fi-
nal  question might be how to achieve an appropriate stride.
The present study is aimed to report this strategy with the im-
portant ROP of cyclic esters as demonstration.

The most popular way to synthesize biodegradable polyes-
ter is coordination-insertion ROP of cyclic esters using PEG as
initiator and stannous octoate (Sn(Oct)2)  as catalyst.[50,51] The
classic procedure[52−55] is named as pathway A here. As shown
in Fig.  1,  pathway  A  involves  two  transition  states  starting
with  the  carbonyl-oxygen  coordinated  complex  of  trigger
and monomer; after the transition state 1 following the nucle-
ophilic attack in pathway A (TSA1), the ester bond outside the
ring  is  formed  in  intermediate  state  1  (IntA1);  prior  to  the
transition state of ring-opening (TSA2), a transformation from
IntA1  to  IntA2  proceeds  because  the  coordination  of  the  es-
ter  oxygen  in  the  ring  to  the  tin  ion  is  necessary  for  the  dis-
ruption  of  the  intra-ring  ester  bond;  finally,  the  reacted
monomer inserts into the Sn―O bond of the trigger through
TSA2  to  afford  the  ROP  product.  Pathway  B  is  a  more  direct
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Fig. 1    Reaction pathways of the coordination-insertion ROP of cyclic esters. Pathway A involves two transition states (TSA1 and TSA2) after the
coordination of the carbonyl oxygen to Sn, and pathway B contains only one transition state after the coordination of the ester oxygen to Sn. The
pathway proposed for the first time in this work (named pathway C) distinguishes itself mostly by the torsion transition state TSC2.
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one,  in which the ring is  opened through the corresponding
ring-opening transition state (TSB) characterized by the ester
oxygen  to  the  tin  ion.  However,  the  search  only  involving
pathway  A  and  pathway  B  cannot  well  describe  the  due  lin-
ear relation between free energy barrier and the logarithm of
reaction  constant,  which  will  be  presented  in  Discussion  of
this publication.

Herein,  we  adopted  a  “stride”  and  discovered  a  new  reac-
tion pathway (named as pathway C) to involve a torsion trans-
ition state TSC2 of  the ester  bond outside the ring.  The con-
sequent another new ring-opening transition state TSC3, was
added,  and  a  quasi-ergodic  reaction  pathway  search  of  co-
ordination-insertion ROP is enabled for the first time. Six kinds
of  monomers,  D-lactide  (D-LA),  L-lactide  (L-LA), ε-caprolac-
tone (CL), δ-valerolactone (VL),  glycolide (GA),  and trimethyl-
ene urethane (TU), were investigated in the formulism of the
quasi-ergodic  search  among  all  three  reaction  pathways  of
ROP,  using  the  methodology  of  DFT  modelling.  Combined
with  the  kinetic  experiments  of  ROP  of  the  indicated
monomers,  the highly  linear  relationship between the calcu-
lated energy barriers and logarithms of the experimental rate
constants was established among D-LA, L-LA, CL, and VL. The
established relationship  works  in  a  wide range and its  extra-
polatablity  for  both  lactide  and  lactone  monomers  was  con-
firmed by dealing with other two kinds of monomers (GA and
TU).  This  excellent  structure-reactivity  relationship  has  valid-
ated the identification of the real rate-determining TSs of co-

ordination-insertion ROP and the corresponding ergodicity of
the  search  of  reaction  pathways  after  adding  pathway  C,
which  was  achieved  by  the  appropriate  stride  strategy  sug-
gested in this work.

EXPERIMENTAL

Kinetic Experiments
Bulk  polymerization  was  carried  out  by  ring-opening  of  cyclic
esters  under  the  nitrogen  atmosphere.  Monomers  and  the
initiator  PEG1500  were  transferred  into  the  annealed  glass
vessels  in  bulk.  The  catalyst  Sn(Oct)2 in  toluene  solution  was
distributed  into  the  reaction  system.  A  typical  polymerization
process was performed at 140 °C for 1 h using standard Schlenk
techniques,  and  the  sampling  samples  were  quenched  by
cooling  down  rapidly. 1H-NMR  and  GPC  were  utilized  to
characterize the polymerization products and kinetic samples to
obtain  the  number-average  molecular  weight  (Mn)  of
(co)polymers and molar mass dispersity.  Details  can be seen in
Supplementary Methods in ESI.

DFT Calculations
DFT  was  used  to  model  the  key  reaction  states  on  the  atomic
level and the truncated models of the corresponding triggers as
shown in Fig. 2 were adopted to accelerate the calculations. All
geometry optimizations were performed in gas phase using the
M06-2X  functional,[56] a  hybrid  meta-GGA  functional  with  high
accuracy in computing energy barriers[57] with the empirical D3
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Fig. 2    The truncated triggers involved in the DFT calculations. PGA is the polymerization product of glycolide (GA), PDLA is the product
of  D-lactide  (D-LA),  PLLA  is  the  product  of  L-lactide  (L-LA),  PCL  is  the  product  of ε-caprolactone  (CL),  and  PVL  is  the  product  of δ-
valerolactone (VL).  The polymerization product of trimethylene urethane (TU) is absent since the propagation of TU is undetectable in
the experimental time.
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long-range-dispersion correction established by Grimme et al.[58]

The basis set employed for all  atoms in geometry optimization
and frequency analysis  was  Def2-TZVP.[59] All  calculations  were
performed using the Gaussian 09 software package[60] with the
assistance  of  Molclus  program[61] in  rigid  scan.  Default  self-
consistent  field,  ultrafine  integral  lattice,  and  tight  geometry
optimization convergence criteria were used in the calculations.

RESULTS

Rationality of the Stride and thus Feasibility of
Pathway C
The  “stride”  suggested  in  this  study  of  ROP  comes  from  the
rotation  of  a  partially  conjugated  ester  bond.  Before  the
occurrence of this stride, the reaction system experiences the
formation  of  complex  C,  intermediate  C1  (intC1)  and
intermediate  C2  (intC2),  as  schematically  presented  in Fig.  1.
Pathway  C  proceeds  through  the  same  transformation  from
Int1 to Int2 with pathway A.  We first  justify  the rationality  of
the transformation from intC1 to intC2,  namely,  a  free swing
around  carbonyl  bond.  Here,  the  term  “free”  does  not
necessarily  mean  no  energy  barrier,  but  means  not  a  rate-
determining  TS  under  the  normal  experimental  condition.
The swing around carbonyl bond has been regarded as a free
process  in  some  reports,[62−66] while  some  other  researchers
considered  it  as  a  candidate  of  rate-determining  TS.[67] To
confirm  the  rationality  of  the  transformation  process,  we
examined  a  swing  transition  state  using  DFT  by  adopting  the
initiation  stage  of  CL  as  a  model.  According  to  the  three-
dimensional (3D) demonstration of the transformation in Fig. S2
(in  ESI),  this  process  can  be  analogous  to  a  side  somersault  of
the Sn(Oct)2 residue, and the corresponding intrinsic reaction
coordinate  (IRC)  plots  is  shown  in  Fig.  S3  (in  ESI).  The  swing
transition  state  in  the  local  energy  profile  of  pathway  A  or
pathway  C  (Fig.  S4  in  ESI)  was  far  away  from  being  a  rate-
determining TS of the reaction pathway. So the swing can be
regarded as “free”.

The key new input of the stride suggested here comes from
the rotatability of the partially conjugated ester bond from in-
tC2 to intermediate C3 (intC3), and pathway C thus works on

the rationality of the torsion transition state of the ester bond
outside  the  ring.  The  molecular  structures  of  important  Ints
and TSs  in  the  reaction  pathway of  ROP of  cyclic  esters  con-
tain  two  ester  bonds  sharing  the  same  carbonyl  group.  It  is
well-known that an ester bond is a partially conjugated bond.
With the common knowledge of the non-rotatability of a nor-
mal  double bond,  the rotation of  a  conjugated double bond
seemed to lie on a vague zone. Therefore, we first conducted
a validation of the suggested stride—the rotation of an ester
bond—by  combining  theoretical  calculation  with  experi-
ments.

As demonstration, we carried out first the rigid scans of the
corresponding chemical bonds (carbon-carbon double bond,
carbon-nitrogen  conjugated  double  bond,  carbon-oxygen
conjugated double bond, and carbon-carbon single bond) of
the  four  kinds  of  model  molecules,  ethylene, N,N-di-
methylacetamide  (DMA),  methyl  acetate,  and  ethane.  The
DFT results are shown in Fig. S5 and Table S1 (in ESI). The res-
ultant  energy  barriers  of  the  rotation  of  the  two  conjugated
double bonds were far away from that of the normal carbon-
carbon double bond, which implies the possibility of rotation
of the conjugated double bonds.

We  performed  more  quantitative  DFT  calculations  for  the
rotation process of the two conjugated bonds at the theore-
tical  level  of  M06-2X/Def2-TZVP.  The  IRC  plots  are  shown  in
Fig. S6 (in ESI), and the free energy barriers are listed in Table
S2 (in ESI), giving 18 and 13 kcal·mol−1 for the amide conjug-
ated double  bond and the ester  conjugated double  bond at
25  °C,  respectively.  The  rotation  rates  of  these  two  conjug-
ated bonds can be estimated through transition state theory
by considering the rotation process as a monomolecular reac-
tion.  As  shown  in  Table  S3  (in  ESI),  the  boundary  between  a
rotational  process  and  an  unrotational  process  lies  between
20  and  21  kcal·mol−1 energy  barriers.  Therefore  the  13
kcal·mol−1 barrier  in  the  rotation  process  of  an  ester  bond
could be completely neglected under a normal detection.

Furthermore, we conducted the 1H-NMR tests of DMA and
methyl acetate at a series of temperatures to confirm the ro-
tation  probabilities  of  the  partial  conjugated  double  bonds
experimentally.  As  shown  in Fig.  3(a),  the  transformations
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Fig. 3    Variable-temperature 1H-NMR spectra of DMA in DMSO-d6 and methyl acetate in acetone-d6.  (a) The well-separated signals of
the  two N-methyl  in  DMA  gradually  merge  with  the  increase  of  temperature,  indicating  the  acceleration  of  the  rotation  of  the
conjugated C―N bond. The transition occurred in the temperature range from 100 °C to 125 °C. (b) No significant change of the signals
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from  bimodal  peaks  (assigned  as  the  signals  of trans and cis
N-methyl  groups)  to  a  unimodal  peak  occurred  between
100−125  °C  in  DMA,  indicating  the  rotatability  of  the  amide
bond.

The  comparative  DFT  studies  between  DMA  and  methyl
acetate  illustrates  that  the  rotation  transition  occurs  at  tem-
perature between −5 and 5°C, as listed in Table S4 (in ESI). Ac-
cording  to Fig.  3(b),  no  significant  change  was  observed  in
the 1H-NMR tests of methyl acetate in the temperature range
from −90 °C to 50 °C in acetone-d6.  The tests  in CDCl3 in  the
temperature range from −60 °C to 50 °C were also conducted,
and the results are shown in Fig. S7 (in ESI). There is an over-
whelming  population  of trans-methyl  acetate  to cis methyl
acetate even at 50 °C, according to our calculational results of
the ratio of trans population collected in Table S5 (in ESI). That
is why DMA was employed as one of model molecules in the
NMR experiments.  In this case, two methyl groups are linked

to the amide bond, which guarantees the equal population of
the cis and trans methyl  groups and thus sufficient NMR sig-
nals to distinguish both of them.

The combination of the above varied-temperature 1H-NMR
results  and  DFT  calculations  illustrated  the  rotatability  of  an
ester bond at reaction temperature. The rotation of the C―N
conjugated  bond  in  DMA  with  a  significantly  higher  energy
barrier than the ester bond in methyl acetate was free below
the reaction temperature 140 °C of the ROP process of cyclic
esters,  and the ester bond is rotatable even at room temper-
ature (RT), as illustrated in Table S4 (in ESI).

DFT Calculations of Pathway C Demonstrated by CL
Initiation
Four typical chemical bonds are shown in Fig. 4(a) to represent
the extent of rotatability.  The fast rotation of the ester bond at
room  temperature  grants  the  stride  legitimacy  at  the  normal
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reaction  temperature  of  coordination-insertion  ROP  of  cyclic
esters. The stride made the key configurations during pathway C
with the torsion transition state TSC2 of the ester bond outside
the ring and the corresponding significance of TSC2 exposed to
our vision, as demonstrated by CL initiation (Fig. 4b).

We  mapped  out  the  free  energy  profile  and  the  bond
length  changes  of  the  two  ester  bonds  along  with  the  reac-
tion coordinate of pathway C in the case of CL initiation.  Ac-
cording to Fig. 5, a decrease in bond length of the ester bond
outside the ring and an increase in  bond length of  the ester
bond  in  the  ring  indicate  the  competition  of  the  two  ester
bonds  along  the  reaction  process  even  though  the  carbonyl
carbon  is  seemingly  a  tetra-single-bonded  one,  resulting  in
the  formation  of  a  linear  ester  bond  and  the  disruption  of  a
cyclic  ester  bond  along  with  the  ring-opening  process.  The
corresponding  changes  in  the  bond  angles  of  the  two  ester

bonds can be seen in Figs. S8 and S9 (in ESI). The free energy
barrier  of  the  ring-opening  transition  state  TSC3  through
TSC2 is  lower than that of TSA2, making TSC1 stand out as a
top  contender  of  the  rate-determining  step  of  coordination-
insertion ROP of cyclic esters.

We also examined the effects of  spatial  positions between
trigger and monomer during the early coordination between
Sn (in catalyst) and O (in monomer) on the free energy of the
later transition state. Fig. 6 shows four spatial types for TSC1.
Different  types  of  TSC1  lead  to  different  types  of  TSC2  and
TSC3,  but  only  two  types  were  defined  for  TSC2  and  TSC3
since trans and cis afford  the  same  configuration  after  the
transformation  from  IntC1  to  IntC2.  The  outside-trans initial
configuration of the reactant complex afforded the minimum
free energy barrier of pathway C in the case of the ROP of CL
initiated with PEG and catalyzed with Sn(Oct)2.
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Combination of Quasi-ergodic Search of Reaction
Pathways and Kinetic Experiments Using CL as a
Demonstration
The quasi-ergodic search of reaction pathways in this work was
conducted using the methodology of  DFT modelling.  The ROP
of cyclic esters involves a chain initiation stage (namely the first
insertion  of  monomers)  and  the  followed  propagation
stage.[68−71] The change of chemical structures of triggers along

with  polymerization  processes  are  schematically  presented  in
Fig. S10 (in ESI).

We calculated all  pathways  in Fig.  1 with  the spatial  types
defined  in Fig.  6 for  both  initiation  and  propagation  stages
using  DFT  at  the  theoretical  level  of  M06-2X/Def2-TZVP.  The
optimal  energy  barriers  of  three  pathways  in Fig.  7 illustrate
the superiority of pathway C with the torsion transition state
TSC2  to  other  pathways  in  both  initiation  and  propagation
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stages.  The  rate-determining  TSs  of  initiation  and  propaga-
tion of CL were both the corresponding outside-trans types of
TSC1,  but  different  free  energy  barriers  (20.50  kcal·mol−1 for
initiation  and  19.58  kcal·mol−1 for  propagation)  were  given,
indicating  the  higher  experimental  reactivity  of  propagation
of CL than initiation.

A  theoretical  energy  barrier  of  a  real  rate-determining  TS
should be reflected from the corresponding experimental kin-
etics. To confirm the obtained theoretical results, we conduc-
ted  the  kinetic  experiment  of  CL,  in  which  the  experimental
reaction  rate  constants  of  the  initiation  stage  and  the
propagation  stage  were  calculated  based  on  the  following
equations:

ki [R*
0] t = ln ( [M]i,0[M] ) , 0 ≤ t ≤ ti (2)

kp [R*
0] (t − ti) = ln ( [M]p,0 − [M]eq[M] − [M]eq

) , t > ti (3)

[R*
0] [M]where k is reaction rate constant,  is initial concentration of

trigger, t is  time, ti is  the reaction time of  initiation step,  is
concentration  of  monomer,  and  subscripts  “i”  and  “p”  mean
initiation  and  propagation,  respectively.  The  detailed
derivation along with Eqs.  S(1)  and S(2)  are  given in  ESI.  The
experimental  plots  of  conversion  versus  time  and
corresponding  kinetic  fittings  are  shown  in Fig.  7.  The  data
confirmed the higher  reactivity  of  the propagation stage of  CL
than the initiation stage.

The Universality of the Quasi-ergodic Search Enabled
by the Stride Strategy
We investigated other five kinds of monomers in both initiation
and  propagation  stages  to  further  verify  the  rate-determining
TSs after combination of DFT calculations of all three pathways
with kinetic experiments. Figs. S11 and S12 (in ESI) indicate that,
at  the  initiation  stage,  TSC1  of  pathway  C  is  the  rate-
determining TS in the cases of GA, D-LA, L-LA, CL, and VL, while
TSC2 of pathway C is the rate-determining TS in the case of TU;
at  the  propagation  stage,  TSC1  of  pathway  C  is  the  rate-
determining TS in the cases of D-LA, L-LA, CL, and VL, while TSC2
of  pathway  C  is  the  rate-determining  TS  in  the  case  of  GA.
Although pathway C is always superior to both pathways A and
B  (see  Tables  S6  and  S7  in  ESI  for  more  details),  pathway  A  is
competitive  in  the  cases  of  CL  initiation  and  VL  initiation,
indicating  the  very  significance  of  the  quasi-ergodic  search  of
reaction pathways.

It  should be noticed that  the optimal  spatial  types are de-
pendent  upon  monomers,  pathways,  and  reaction  stages,
suggesting the necessity  of  considering the effect  of  the ini-
tial spatial type on the energy profile of the forthcoming reac-
tion,  which  might  also  be  another  quasi-ergodic  search  in  a
sense. The optimal energy profiles of the indicated monomers
are  mapped  out  in Fig.  8(a),  and  the  corresponding  rate-de-
termining  TSs  are  highlighted  by  the  dashed  cycles  and  the
energy  barrier  values.  D-LA  and  L-LA  exhibited  equivalent
ROP  reactivities  at  both  initiation  and  propagation  stages,
and CL exhibited equivalent  reactivity  to VL only at  the initi-
ation stage.

To  validate  the  rate-determining  TSs  identified  by  the
quasi-ergodic search of reaction pathways. The experimental

kinetic constants of initiation and propagation stages of D-LA,
L-LA, and VL were determined by the same procedure as CL.
The  polymerization  results  together  with  those  of  CL  are
presented in Fig. 8(b). More details of concentration and con-
version of monomers with reaction time are presented in Fig.
S13  (in  ESI).  The  corresponding  NMR  spectra  and  gel  per-
meation  chromatography  (GPC)  profiles  of  the  synthesized
copolymers are shown in Figs. S14−S22 (in ESI). The ROP of D-
LA  and  L-LA  proceeded  in  almost  the  same  reaction  rate  at
both  initiation  and  propagation  stages  while  the  initiation
plots of  CL almost coincided with those of  VL,  indicating the
validity of the calculation results qualitatively.

The main results of the six kinds of monomers obtained by
DFT  calculations  and  direct  experimental  kinetic  fitting  were
collected in Fig.  8(c)  with three “NA”s indicating the absence
of  the  experimental  data,  which  we  have  to  obtain  through
indirect methods as follows.

The Indirect Experimental Methods to Obtain the
Reaction Constants Not Available in the Normal
Kinetic Experiments

[R*
0]

kGA [R*
0]

ki,GA [R∗
0]

kp,GA [R∗
0]

Obtaining  the  constants  hard  to  gain  in  the  normal  kinetic
experiments is of interest for validating the power of the quasi-
ergodic  search  of  reaction  pathways  enabled  by  the  stride
strategy. We employed the copolymerization of GA and L-LA to
estimate the reaction constant of GA, namely kGA, based on that
of L-LA kL-LA from the homopolymerization of L-LA and the ratio
between  them kGA/kL-LA from  the  copolymerization  calculated
with Eq. S(1) (in ESI). The basic idea is summarized in Fig. S23 (in

ESI).  Set  the  initial  concentration  of  trigger  as ,  one  can

obtain  by Eq.  S(2)  (in ESI).  The copolymerization of GA

and  L-LA  with  equimolar  feeding  can  significantly  impede  the
otherwise crystallization of PGA during homopolymerization of
GA. The copolymerization process of GA and L-LA was detected
with 1H-NMR, and some typical spectra are presented in Fig. S24
(in ESI). As summarized in Fig. S25 (in ESI),  = 95.51 h−1

and  =  63.21  h−1 for  the  initiation  and  propagation

stages of GA, respectively.
The  issue  of  TU  is  different  with  GA.  In  principle,  its  poly-

merization product PTU prefers to depolymerization. The free
energies  of  the  assumed  reactant  and  product  are  shown  in
Fig. S26 (in ESI). The complex consisting of the trigger and TU
monomer afforded a lower free energy than the product after
introducing the interaction of N―H···O hydrogen bond, indic-
ating a thermodynamically unsupported process of polymer-
ization of TU, which is consistent with our experiment (for in-
stance, the GPC profiles of the samples in the presence of the
initiator PEG 1500 at different reaction times in Fig. S27 in ESI)
and  also  with  the  depolymerization  of  PTU  with  Tin-based
catalyst at 140 °C reported by Neffgen et al.[72] Nevertheless, it
does not mean that the very initiation cannot occur. The cal-
culated energy barrier of 30.03 kcal·mol−1 in Fig. 8(c) was less
than the empirical 35 kcal·mol−1 for a feasible reaction, which
suggested a detectable reactivity of TU initiation at 140 °C. To
validate this, we performed a series of NMR measurements till
48 h and the spectra are shown in Fig. S28 (in ESI). About 1.5%
conversion  was  detected  at  1  h,  while  the  conversion  of  TU
upon linking each hydroxy end of the initiator PEG1500 with
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Fig. 8    DFT calculational outputs and the experimental results of ring-opening polymerization of different monomers. (a) The optimal
free energy profiles from DFT calculations of ROP of the indicated monomers. Only TSC1 and TSC2 in pathway C are candidates for rate-
determining  TS,  which  affords  the  calculated  energy  barriers  of  coordination-insertion  ring-opening  polymerizations  of  monomers
investigated in this work. The values indicate the relative energies of the rate-determining TSs of ROP of the corresponding monomers.
(b)  The  kinetic  fitting  of  the  initiation  stage  and  the  propagation  stage  of  monomers  except  GA  and  TU.  The  experiments  were
performed under the 1/50 molar ratio of catalyst/initiator with the same mass feeding of initiator and monomers, respectively. The result
of GA is absent because the initiation stage of GA was too fast to monitor and the kinetic characteristics of the propagation stage of GA is
supposed to be disturbed by the crystallization of PGA. The result of TU is absent because only 1% conversion was observed in reaction
time, which disabled the kinetic fitting under the same condition with other monomers. The fitting lines of D-LA and L-LA, CL and VL, in
initiation are almost coincident, and the closed dashed lines were separated slightly to highlight that the number of fitting lines is four.
(c)  The collection of main results obtained by calculations and experimental  kinetic fittings investigated in this work.  Rate-determined
TSs were identified by the quasi-ergodic search of all three pathways, although pathway C was always the most favored one. Subscripts
“i” and “p” mean the initiation and propagation stages, respectively. “NA a” means the data was not available because the initiation of GA
is too fast to be monitored and the propagation of GA is supposed to be disturbed significantly by the high crystallinity of PGA even in a
low Mn;  “NA b”  means  the  data  was  not  available  because  no  significant  initiation  was  observed  in  the  time  scale  of  the  kinetic
experiments; “NA c” means the calculation is not meaningful because of the absence of experimental propagation of TU.

  Rao, W. H. et al. / Chinese J. Polym. Sci. 2023, 41, 745–759 753

 
https://doi.org/10.1007/s10118-023-2930-6

 



one  ring-opened  monomer  reads  6.7%.  As  indicated  by  Fig.
S29  (in  ESI),  the  increase  of  the  conversion  after  1  h  was  ex-
tremely low, indicative of the depolymerization after the very
initial ROP.

ki,TU [R∗
0] = 0.0154h−1

So  it  is  interesting  that  the  initiation  of  the  first  monomer
might  be  followed  by  depolymerization  for  ROP  of  TU.  Only
the very initial data could be used to roughly estimate the ini-
tial  reaction  constant.  As  plotted  in  Fig.  S30  (in  ESI),

 based on the data in 1 h.

DISCUSSION

Organic  reactions  including  but  not  limited  to  polymerization
play  important  roles  in  academic  research  and  industry.[73−77]

Most  of  them  are  accelerated  by  catalysts,[78−82] and  thus
understanding  of  the  reaction  mechanism  is  helpful  for
predicting the reactions.[83−86] While DFT has been widely used
to  study  the  catalysis  process,  it  is  rare  to  establish  an
extrapolatable  relationship  between  theoretical  energy  and
experimental  constants,  which  is  much  required  for  a
quantitative  description  of  the  reaction  kinetics.[87−92] The

difficulty is ever more significant in dealing with polymerization.
With  the  development  of  biomedical  materials,[93−98]

biodegradable polymers such as aliphatic polyesters have been
paid much attention, and the most important way to synthesize
biodegradable  polyester  is  ROP.  Herein,  we  employed  a  stride
strategy  in  the  DFT  investigation  of  the  coordination-insertion
mechanism of ROP of cyclic esters. Based on the stride to a new
landscape,  pathway  C  was  added  into  and  the  corresponding
quasi-ergodic  search  among  three  pathways  revealed  the
regulation of a series of cyclic ester monomers.

Establishing the Exponential Relationship or Linear
Semilogarithmic Relationship
The  theoretical  results  of  the  quasi-ergodic  search  are  in
agreement  with  the  experimental  ones.  The  exponential
relationship  or  linear  semilogarithmic  relationship  between
experimental  reaction  rate  constants  and  calculated  energy
barriers  was  established  using  the  data  collected  in Fig.  8(c).  If
only pathway B was involved in identifying the rate-determining
TS,  the  linear  fitting  resulted  in  qualitative  error,  as  shown  in
Fig.  9(a),  because  of  the  very  nonergodicity.  The  more  ergodic
search via pathways  A  and  B  resulted  in  a  qualitatively  correct
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picture,  yet  a  quantitatively  worse  linearity  as  comparison
between Figs.  9(a)  and  9(b).  Hence,  identifying  the  rate-
determining  TSs  by  a  less  ergodic  way,  namely  without  our
stride to the new landscape to enlist the indispensable pathway
C into the reaction pathway search, made the obtained energy
barriers be the outliers of the fitting line.

The semilogarithmic relationship in Fig.  9(b) illustrates  the
excellent  linear  fitting  of  D-LA,  L-LA,  CL  and  VL.  The  data  of
GA  and  TU  obtained  by  the  indirect  methods  as  depicted  in
Figs. S23−S25 and Figs. S26−S30 (in ESI) were plotted as well,
which also match the established relationship. There are only
slight  deviations  between  the  model  values  of  rate  constant
ratio of GA/L-LA and the experimental data of copolymeriza-
tion at both initiation and propagation stages. For the case of

TU  initiation  with  the  input  energy  barrier  8.6  kcal·mol−1 far
beyond the modeling range, only 10% deviation between the
model  and  experimental  reaction  rate  constants  was  ob-
served.  Hence,  the  established  relationship  based  on  the
quasi-ergodic search resulted in the excellent extrapolability.

Understanding the Superiority of Pathway C
In  order  to  understand  how  the  landscape  around  TSC3  in
pathway  C  possesses  a  significantly  lower  energy  barrier  than
TSA2  in  pathway  A,  we  collected  the  bond  lengths  and  the
bond  angles  of  the  ester  bond  outside  the  ring  in  all  cases  of
TSA2 and TSC3 investigated in this work into Tables S8 and S9
(in  ESI)  and  plotted  the  bond  lengths  and  the  bond  angles
versus free energy barriers into Fig. 10.
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Fig. 10    Correlation of bond lengths and bond angles of the ester bonds outside the ring to energy barriers of TSA2 and TSC3. The data
are from six monomers with outside and inside type configurations of the transition states from DFT calculations. The bond lengths in
TSC3 are closer to the ester bond length in methyl formate than those in TSA2, while the bond angles in TSC3 are significantly closer to
the normal bond angle of a sp2-hybridized structure than those in TSA2, indicating a stronger conjugation of the ester bond outside the
ring in TSC3 than that in TSA2.
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It can be seen that the scatter points of the bond lengths in
TSA2  are  closer  to  the  bond  length  of  the  ester  bond  in
methyl  acetate,  while  those  in  TSC3  are  closer  to  the  bond
length of the ester bond in methyl formate. The shorter bond
length of  the ester  bond outside the ring in  TSC3 than TSA2
indicates a stronger conjugation in the ester bond outside the
ring  in  TSC3  than  TSA2.  The  bond  angles  in  TSC3  reach  the
normal  bond angle of  a  sp2-hybridized structure while  those
in  TSA2  are  much  closer  to  the  normal  bond  angle  of  a  sp3-
hybridized  structure.  We  tried  to  calculate  the  average  of  all
cases of TSC3 and TSA2, giving bond lengths 1.338 and 1.346
Å  for  TSC3  and  TSA2,  respectively,  and  bond  angles  120.0°
and 113.9° for TSC3 and TSA2, respectively. The lower energy
barrier of TSC3 than TSA2 comes from the critical structure re-
laxation, which proceeds by the torsion transition state TSC2
based on the stride strategy suggested in this work.

Last, we would like to mention that according to our mod-
elling  (data  not  shown)  of  the  ROP  of  lactam  catalyzed  by
Sn(Oct)2 is similar to that of TU initiation. We expect that the
stride strategy in DFT calculations is powerful for dealing with
other  catalyst/initiator  systems  of  ROP  of  cyclic  esters  and
might  be  useful  in  mechanism  studies  of  organometal-cata-
lyzed polymerization of lactam.

CONCLUSIONS

Ergodicity is a sufficient condition to obtain the global minimum
barrier  in  mechanism research,  which is  still  hard to  achieve in
quantum chemistry even if the methodology of DFT with higher
cost-effectivity  is  applied.  In  this  article,  we  suggested  a  stride
strategy to enable a quasi-ergodic search of reaction pathways
to identify  the real  rate-determining TSs.  We tried this  strategy
to investigate the coordination-insertion mechanism of  ROP of
cyclic  esters,  of  which  a  satisfactory  structure-reactivity
relationship is still  absent in the literature. Based on the insight
that even a partial  double bond can be rotated at the catalysis
temperature,  a  new  pathway,  named  as  pathway  C,  with  the
critical  torsion  transition  state  TSC2  of  the  ester  bond  outside
the ring, was found.

The  more  ergodicity  in  reaction  pathway  search  renders
the  linear  semilogarithmic  relationship  between  the  experi-
mental  reaction  rate  constants  and  the  calculated  free  en-
ergy  barriers,  using  PEG  and  Sn(Oct)2 as  the  model  initiator
and  catalyst,  respectively.  The  established  relationship  with
high  goodness  of  fit  and  excellent  extrapolatability  for  both
lactone  and  lactide  monomers  highlights  the  power  of  DFT
calculations and Eyring-Polanyi transition state theory to pre-
dict catalysis reactions, and a prerequisite is the quasi-ergodi-
city  of  reaction  pathway  search  to  obtain  the  real  rate-de-
termining TSs. Hence the present study stimulates that in the
case of unsatisfactory structure-reactivity relationship of a re-
action  series  in  DFT  modelling,  one  can  try  a  stride,  namely,
“unexpected on the surface” actions such as rotation of a par-
tially  conjugated chemical  bond,  leading to a relatively large
scale and multi-atom displacement.
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